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EXCUTIVE SUMMARY 
 

The Washington State Department of Transportation (WSDOT) maintains a network of more than 

7,000 miles of state highways, which contributes to the economic competitiveness of the State, the 

region, and the nation. Winter weather tends to reduce both the average traffic speed and traffic 

volume, whereas the implementation of winter road maintenance (WRM) operations tends to 

mitigate such reductions. Yet, research is currently lacking in understanding the relationship 

between highway mobility and WRM operations, especially when it comes to the specific road 

weather scenarios in the Pacific Northwest. 

The objective of this project is to model the macroscopic effects of winter maintenance 

current practices on traffic mobility on Washington highways. In other words, the focus is placed 

on the aggregated outcome of winter weather and WSDOT winter maintenance practices on the 

parameters characteristic of traffic operations, instead of the microscopic effects or changes in 

individual driver behaviors. To meet this goal, the following objectives are addressed: (1) 

identifying appropriate WSDOT highway segments for this modeling study and collecting the 

relevant data related to winter maintenance practices and climatic conditions; (2) collecting 

sensor data at the selected WSDOT highway segments to characterize the changes in traffic 

patterns on winter pavements; and (3) developing a data model that correlates the traffic mobility 

(aggregated measures) and explanatory variables.  

Through extensive coordination with WSDOT and University of Washington, a 

substantial amount of historical data on WRM activities, macroscopic traffic parameters, and 

climatic conditions was obtained by the research team. Out of this data, we identified a total of 

247 complete records available which had the friction index value as well as other parameters of 

interest, for December 2016, over a 20-mile segment on the Interstate highway I-5. The data of 

interest was organized, coupled with each other based on milepost and time stamp, and readied 

for analyses. Out of the 247 records, a randomly selected dataset (six records) was set aside for 

testing the developed ANN models, whereas the rest of data was used to train the ANN models.  

In this work, one ANN model (with 8-11-1 structure) was developed for the traffic 

volume during the current hour, Volume(0h) and the other (with 8-4-3-1 structure) for the 

average traffic speed during the current hour, Speed(0h). For either of these two output factors, 

the following eight input factors were used for the model development and validation: Volume(-

1h), Speed(-1h), Maintenance(-1h), AirTemp, SfTemp, Accumulated Precip, Sf Status, and 

Friction Index. From the comparisons of actual and predicted Volume(0h) and Speed(0h) values, 

we can validate that these two models were capable of capturing the hidden relationships 

between the input and output factors. As such, these two models were used to predict a 

hypothetical “no WRM” scenario on the 20-mile I-5 highway segment. In the absence of WRM 

operations, the models predicted that the hourly traffic volume and average traffic speed would 

drop an average value of 26.9% and 6.6% (or a median value of 17.2% and 8.1%), respectively. 

Another means of quantifying the mobility benefits of the WSDOT WRM operations is by the 

avoided travel delays. In the absence of WRM operations, the models predicted an average value 

of 4.7% (or a median value of 8.8%) additional time needed to go through this 20-mile highway 

segment during December 2016.  



xii 
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Chapter 1.  Introduction 

1.1 Problem Statement 

The Federal Highway Administration (FHWA) has estimated that “over 70 percent of the 

nation’s roads are located in snowy regions…and nearly 70 percent of the U.S. population lives 

in these regions” (as shown in Figure 1.1). Improving snow and ice control operations could 

result in significant economic, environmental, and social benefits. These benefits include 

enhanced mobility, fewer crashes, fewer emergency service disruptions, reduced travel costs, 

better fuel economy, and sustained economic productivity (Figure 1.2). The cost of shutting 

down the highways in severe wintery weather conditions is not affordable. According to the 

American Highway Users Alliance (2014), a one-day major snowstorm can cost a state $300 to  

$700 million if counting both direct and indirect 

costs. For instance, the closure of I-90 over 

Snoqualmie Pass in Washington State was estimated 

to cost $700,000 per hour (Daily Record, 2008). In 

one recent study sponsored by the National 

Research Council (Ye et al., 2013), the quantifiable 

benefits of winter highway maintenance by the 

Minnesota Department of Transportation (DOT) 

was  estimated at about $220 million per winter 

season, even without considering the risk of 

highway closures in the absence of winter 

operations.  

 

Figure 1.1. U.S. areas affected by snow and ice 

(adapted from: FHWA 2017) 

Nonetheless, research is currently lacking in 

understanding the relationship between highway 

mobility and winter road maintenance operations, 

especially when it comes to the specific road 

weather scenarios in the Pacific Northwest. This 

understanding is much needed to justify the 

development of cost-effective and sustainable 

winter maintenance programs, policies and 

standards, or operational strategies. Without such a 

quantitative understanding, it is unlikely to fully 

appreciate the benefits of the improved passenger 

and freight movements during winter weather. It is 

noteworthy that the Washington State Department 

of Transportation (WSDOT) maintains a network of 

more than 7,000 miles of state highways, which 

contributes to the economic competitiveness of the 

State, the region, and the nation. 

 
Figure 1.2. Winter highway operations are vital 

to traffic mobility, safety, economy and society 

(Shi & Fu, 2018). 

1.2 Objectives 

The goal of this report is to model the macroscopic effects of winter maintenance current 

practices on traffic mobility on Washington highways. In other words, the focus is placed on the 
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aggregated outcome of winter weather and WSDOT winter maintenance practices on the 

parameters characteristic of traffic operations, instead of the microscopic effects or changes in 

individual driver behaviors. To meet this goal, the following objectives are addressed: (1) 

identifying appropriate WSDOT highway segments for this modeling study and collecting the 

relevant data related to winter maintenance practices and climatic conditions; (2) collecting 

sensor data at the selected WSDOT highway segments to characterize the changes in traffic 

patterns on winter pavements; and (3) developing a data model that correlates the traffic mobility 

(aggregated measures) and explanatory variables such as indicators of weather severity and 

winter maintenance practices.  

This scope is directly relevant to the CAMMSE theme of “Developing data modeling and 

analytical tools to optimize passenger and freight movements”. The research results will allow 

WSDOT and other highway agencies in the region to achieve better understanding of how winter 

maintenance best practices affect traffic mobility. The developed models and improved 

understanding may inspire technologies to facilitate best practices in snow/ice control operations 

or countermeasures to mitigate mobility challenges related to winter weather. This research will 

ultimately translate to better decision-making and management practices with respect to 

providing reliable and safe winter highways for the traveling public.  

1.3 Expected Contributions 

To accomplish these objectives, several tasks have been undertaken.  

Task 1. Data collection from WSDOT practitioners. The research team worked with the 

WSDOT stakeholders to gather data for traffic conditions and winter maintenance practices, for 

hundreds of WSDOT highway segments. We eventually identified a few representative highway 

segments with the appropriate and available data. Such data enabled the examination of how 

winter maintenance current practices (a combination of plowing, anti-icing, and deicing) by 

WSDOT impact the macroscopic measures of traffic mobility.  

Task 2. Collection and analysis of WSDOT data from loop detectors. The research team 

collected and analyzed the historical WSDOT traffic data from loop detectors, for the highway 

segments of interest (from Task 1). Automatic vehicle detectors are embedded in interstates in 

the State of Washington. “These detectors are based on single inductive loops, from which data 

on traffic volumes (i.e. vehicle counts) and occupancy (i.e. proportion of time during which the 

loop is occupied) are available for 20 or 30 second observational periods” and this data is 

accessible via DriveNet: http://wsdot.uwdrive.net/WSDOT and can provided the team with 

valuable information on traffic patterns such as traveling speed and volumes. The team spent 

substantial efforts on organizing, aggregating and analyzing such data, before the data became 

usable for subsequent mobility data modeling. It should be clarified that this study did not 

examine the microscopic measures of traffic mobility, such as individual’s travel choice behavior 

and driving behavior (e.g., time and distance headways, lane changing, and vehicle trajectory). 

The macroscopic measures explored include: hourly traffic volumes and average vehicle speeds 

on individual highway segment. 

Task 3. Data modeling of winter traffic mobility on WSDOT highways. The research 

team combined and coupled the data collected from Task 1 and Task 2 and subsequently 

developed a quantitative model that describes the relationship between macroscopic measures of 
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traffic mobility and explanatory variables such as indicators of weather severity and winter 

maintenance practices.  

Task 4. Final report and technology transfer. This final report was written and 

submitted to CAMMSE UTC and a student poster will be submitted to the 2nd annual CAMMSE 

Symposium in Charlotte, North Carolina. 

1.4 Report Overview 

The remainder of this report is organized as follows: Chapter 2 presents a comprehensive 

review of the state-of-the-art and state-of-the-practice literature on quantifying how winter 

weather and winter road maintenance operations affect the macroscopic traffic parameters (i.e., 

mobility). Chapter 3 describes the methodology used in this exploratory study, including the 

procedures used to collect and process the relevant data and the approach of developing and 

evaluating predictive models. Finally, Chapter 4 concludes this report with a summary and a 

discussion of the directions for future research.  
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Chapter 2.  Literature Review 

2.1 Introduction 

This chapter provides a review and synthesis of recent literature relevant to quantifying 

the mobility benefits of winter road maintenance (WRM) operations, with the focus on 

macroscopic effects (instead of microscopic effects). This aims to provide an up-to-date 

overview of the current understanding of this issue and help identify gaps that may exist in the 

current knowledge domain.  

 

Figure 2.1: Multiple factors and interactions affecting winter mobility (Fu and Kwon, 2018) 
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2.2 Understanding the Macroscopic Effects of Winter Weather on Traffic 

2.2.1 Background 

Winter weather is known to compromise the safety, reliability, resilience, user experience 

and productivity of surface transportation systems. In addition to reducing the safety 

performance of a transportation system, snowy and icy conditions can have a significant impact 

on accessibility and mobility by preventing or delaying people and business to reach their desired 

services, activities and opportunities. Fu and Kwon (2018) developed a chart to schematically 

illustrate the multiple factors that affect winter mobility on roads and their interactions (see 

Figure 2.1). This chart considered the microscopic effects (e.g., individual traveler or driver’s 

decisions/behaviors) as well as the macroscopic effects (aggregated outcomes such as traffic 

volume, speed, and capacity). 

Fu and Kwon (2018) summarized the studies that investigated the effects of “winter 

weather on key macroscopic traffic parameters, namely, traffic volume, free-flow speed (FFS), 

and capacity”. In the six case studies reviewed, the reductions in traffic volume due to winter 

weather ranged widely: e.g., 7-17% for light snowfall (<1”, i.e., 25 mm) or 41-53% for heavy 

snowfall (225 mm to 275 mm), 29% (or 2.3% for each additional inch of snowfall), 2-7%, 7-

51%, 13.3-22.9%, or 1.8-3.9%. There are many other factors influencing the level of reductions 

in traffic volumes, such as the type of roads, amount of snowfall, type of traffic (e.g., recreational 

vs. commuter), temperature, event duration, visibility, wind speed, road surface conditions, etc. 

Donaher (2014) reported that “a large drop in Road Surface Index (RSI, a friction-like measure) 

would cause a significant reduction in (traffic) volume on the order of 10%”.  

According to Fu and Kwon (2018), “winter weather conditions also affect individual 

drivers’ driving behavior and thus the aggregated behavior of traffic as represented by the three 

macroscopic traffic measures - flow, speed and density”. In the case studies reviewed, the 

reductions in FFS due to winter weather ranged widely: e.g., 9.5 km/h for light snowfall (and 

light rain) or 16.4 km/h for heavy snowfall, 18.13 km/h for snow events, 417-13.46%, 3-5% for 

light snowfall and 30-40% for heavy snowfall, or 5-16% for light snowfall and 5-19% for heavy 

snowfall. The reductions in traffic capacity due to winter weather also varied, e.g., 4.29-22.43%, 

or 12-20% for light snowfall and 5-19% for heavy snowfall. There are many other factors 

influencing the level of reductions in FFS and capacity, such as road geometry, climatic 

conditions, and WRM activities.  Ghasemzadeh et al. (2018) developed speed selection models 

that revealed that “the odds of drivers reducing their speed 40 were 9.29 times higher in snowy 

weather conditions, followed by rain and fog with 1.55 and 1.29 times, respectively”, relative to 

clear conditions. 

Kwon et al. (2013) collected data for an urban freeway in Canada and their analysis 

suggested that the FFS and capacity reductions were 17.0% and 44.2%, respectively, given the 

snow precipitation rate of 5 mm/hr and RSI of 0.2 (snow covered). In contrast, the FFS and 

capacity reductions were only 11.0% and 24.1%, respectively, given the same snow precipitation 

rate but a RSI of 0.8 (bare wet). 
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2.3 Understanding the Macroscopic Effects of WRM Operations on Traffic 

2.3.1 Background 

Investing in winter transportation operations, particularly for the northern part of the U.S. 

is essential to optimize the passenger and freight movements and improve road user mobility and 

safety, which have direct benefits to the natural environment and human society. The U.S. 

economy is dependent on the productivity of our transportation systems, and shutting down our 

roads during winter conditions has significant impacts to other aspects of daily life including 

transport to hospitals, schools and community centers. To this end, it is desirable to use the most 

recent advances in the application of materials, practices, equipment and other technologies.  

Highway agencies typically employ a toolbox approach to prevent or mitigate the 

detrimental effects of snowy/icy conditions on pavement. For instance, various tactics are used 

individually or sequentially in mobile operations, depending on the specific road weather 

conditions, materials and equipment availability, and the rules or guidelines by the agency. These 

tactics often include: anti-icing, deicing, mechanical removal (e.g., plowing), and sanding. Over 

the last two decades, there has been a transition from mostly deicing to anti-icing wherever 

possible (O’Keefe and Shi, 2005; Shi et al., 2013; Cui and Shi, 2015). Deicing aims to bread the 

bond between the pavement and compacted snow/ice, whereas anti-icing aims to prevent it. 

When conducted properly, anti-icing can reduce the amount of plowing and chemicals required 

(USEPA, 1999) or eliminate the need for abrasives. Anti-icing also helps to address the 

formation of black ice.  

Numerous vehicle-based technologies, including automatic vehicle location (AVL), 

surface temperature sensors, on-board freezing point and ice-presence sensors, salinity sensors, 

visual and multi-spectral sensors and millimeter wavelength radar sensors, have been developed 

in recent years to facilitate more efficient and safer WRM operations (Ye et al., 2012). Among 

them, AVL is conceptually most integrated with other technologies. For instance, most WSDOT 

WRM vehicles have been equipped with AVL, such that both vehicle operators and maintenance 

managers can have more precise information on current roadway conditions, resulting in better 

winter maintenance decisions. Another increasingly popular integration tool is the maintenance 

decision support system (MDSS). MDSS is a software application that integrates information 

from a variety of sources, such as fixed road weather information systems (RWIS) and weather 

service forecasts, to provide recommendations for road treatment. With many mobile data 

collection technologies coming into the practice and integrated into an AVL platform (Ye et al., 

2009a, 2009b), MDSS has been instrumental in improving WRM decisions and its benefits 

significantly outweighed its costs. For instance, the AVL/MDSS system developed and 

implemented by the Minnesota DOT provided better information for operators to optimize 

chemical use and service level, and for supervisors and managers to enhance scheduling, 

dispatch and safety (Hille and Starr, 2008). Recent advances in intelligent transportations 

systems (ITS) and RWIS have also made non-invasive road weather sensors viable options to 

estimate friction coefficient (Ewan et al., 2013). 
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Figure 2.2: Illustration of how to calculate the TTS by WRM operations (adapted from: Fu and Kwon, 2018) 

2.3.2 Quantifying the Macroscopic Mobility Benefits of WRM Operations 

One major benefit item associated with highway WRM operations is improved mobility, 

which has been the subject of many studies (Morisugi et al., 2002; Shahdah, 2009; Shahdah and 

Fu, 2010). Fu and Kwon (2018) presented an approach to calculate the macroscopic mobility 

benefits of WRM operations over a single snowstorm event. This approach “considers all 

vehicles traveling on a highway as a same stream of traffic and their average speeds during a 

snowstorm under a given WRM scenario can be estimated”. As such, the mobility benefits of 

WRM operations can be determined in terms of the total travel time savings (TTS), in light of the 

higher traffic speed due to better pavement surface condition under the scenario with WRM (see 

Figure 2.2). Specifically, the TTS over a particular snowstorm event can be estimated as follows 

(Fu and Kwon, 2018):  

TTS = ∑ 𝑄ℎ(
𝐿

𝑆𝑤𝑜,ℎ
−

𝐿

𝑆𝑤,ℎ
)𝑇

ℎ                                     (1) 

where, 

TTS = travel time savings during a storm event, hr 

T = total number of hours of a storm event, hr  

L = length of the highway section, km 

Swo, h = average traffic speed of the road section in the hth hour under the scenario without 

WRM, km/hr    

Sw,h  = average traffic speed of the road section in the hth hour under the scenario with 

WRM, km/hr 

Qh = total traffic volume over the hth hour of the event 

If we aim to estimate the TTS for the entire State over a winter season, then the TTS can be 

“calculated by summing the individual TTS across all highway sections and all winter events”.   

To enable the calculation of TTS using Equation (1), it is necessary to estimate the average 

traffic speed (as well as traffic volume) under the different scenarios. In light of existing studies, 

we can conclude that winter weather tends to reduce both the average traffic speed and traffic 

volume, whereas the implementation of WRM operations tends to mitigate such reductions. 

Shahdah and Fu (2010) employed the data from Kyte et al. (2001) and developed a model to predict 

the SRF as a function of precipitation intensity (PrIn) and RSC, as given in Equation (2). 

Scenario w/o WRM 

Scenario w/WRM 

Average Speed 

A  

Average Speed 

B  

Travel 

Time 

Savings 

(TTS) 
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   𝑆𝑅𝐹 = −0.0577 + 0.0442 × 𝑃𝑟𝐼𝑛 + 0.0420 × 𝑅𝑆𝐶                            (2) 

where, 

PrIn = a categorical variable representing precipitation intensity, with the values of 1, 2, 

3, 4 corresponding to no precipitation, light precipitation, medium 

precipitation, and heavy precipitation, respectively, 

RSC = a categorical variable representing road surface conditions, with the values of 1, 

2, and 3 corresponding to dry, wet, and snow or ice covered pavement, 

respectively.  

Ye et al. (2013) developed a list of speed reduction factors (SRF) for various road surface 

conditions (RSC), as shown in Table 2.1. They used five seasons of historical traffic speed data 

collected from the State of Minnesota highways. The SRF is defined as the ratio of the average 

traffic speed under a particular RSC to the one under the bare pavement condition, as given in 

Equation (3).   

    Si, RSC = Si, 0 * SRFRSC                                                   (3) 

where,  

Si, 0 = average traffic speed for road section i under normal weather conditions, km/hr 

SRFRSC = speed reduction factor under the given RSC 

 
Table 2.1: Pavement Surface Conditions (RSC) and Associated SRF (Reproduced from Ye et al., 2013) 

RSC SRF 

Chemically wet 0.96 

Compacted snow 0.80 

Deep slush 0.84 

Dusting of snow 0.96 

Icy 0.85 

Lightly ice 0.94 

Lightly slushy 0.90 

Lightly snow covered 0.89 

Slushy 0.87 

Snow covered 0.84 

 

Qiu and Nixon (2009) collected historical data for a total of 16,980 cases from the State of 

Iowa highways, and explored the identification of key factors that affect the macroscopic traffic 

parameters. One statistically significant relationship was identified between the selected climatic 

condition, WRM activities, and the average traffic speed, as given in Equation (4). 

S = a + b * WindSpeed + c * RSC + d*Plow + e * Chemical                                  (4) 

where,  

S = average traffic speed under the given RSC, miles/hr 

Plow = a categorical variable, 1 for plowing action and 0 for no plowing 
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Chemical = the measure of brine application rate, lb/lane-mile 

WindSpeed, in miles/hr 

a = the intercept, i.e., the average traffic speed with no wind and no WRM operations 

The estimated coefficients for subgroups of Iowa highway data are presented in Table 2.2 

(Qiu and Nixon, 2009). As shown, the average traffic speed decreased with the increase in wind 

speed (as indicated by the negative values of the coefficient b). The values of the coefficient c 

suggest that the average traffic speed decreased with the deteriorating RSC. The values of the 

coefficient d suggest that the average traffic speed is likely to increase 2 to 3 mph during the next 

hour if plowing occurred in the current hour. The authors pointed out that the effect of chemical 

application (as shown in Table 2.2) was not consistent for each subgroup, likely due to the issue 

of missing data in precipitation and visibility (Qiu and Nixon, 2009).  

Table 2.2: Estimated coefficients for subgroups of the Iowa highway data (Qiu and Nixon, 2009) 

 

Donaher et al. (2012) collected a substantial amount of data from highways in Ontario, 

Canada and developed a more complex model to predict the average traffic speed as a function of 

more factors that are potentially influential. The developed model is given in Equation (5).  

 

𝑆 = 69.082 + 0.089 ∗ 𝐴𝑖𝑟𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 0.078 ∗ 𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑 + 0.310 ∗ 𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 −

1.258 ∗ 𝑃𝑟𝐼𝑛 + 16.974 ∗ 𝑅𝑆𝐼 − 4.325 ∗
𝑣

𝑐
+ 𝑃𝑆𝐿 + 𝑆𝑖𝑡𝑒           (5)  

where,  

S = average traffic speed under the given RSC, km/hr 

PrIn = hourly precipitation rate over the event, cm 

RSI = a friction-like measure indicative of the road surface condition, unitless (between 0 

and 1), detailed in Usman et al. (2010). 

 
𝑣

𝑐
  = average volume to capacity ratio 

PSL = a coefficient of posted speed limit (PSL = 0 when posted speed limit = 80 km/hr; 

1.951 if 90 km/hr and 12.621 if 100 km/hr) 
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AirTemperature, in C; WindSpeed, in miles/hr; Visibility, in km; and Site is a site variation 

indicator in binary case.  

 

2.4 Summary  

This chapter has provided a comprehensive review and synthesis of the current and 

historic research on quantifying the effects of winter weather on macroscopic traffic parameters 

and the macroscopic mobility benefits of WRM operations.  
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Chapter 3.  Methodology 

3.1 Introduction 

This chapter presents a demonstration of the methodology developed to estimate the 

mobility benefits of winter maintenance operations. The State of Washington was selected as the 

case study state to estimate mobility benefits associated with WRM operations on highways. The 

remaining sections are organized as follows. Section 3.2 provides a description of the procedures 

used to collect and process the data relevant to quantification of mobility benefits by WSDOT 

WRM operations on highways as well as the modeling process (using artificial neural networks 

and the processed data). Section 3.3 concludes this chapter with a summary. 

3.2 Developing Predictive Models 

3.2.1 Data collection and processing 

Maintenance Data 

Winter maintenance information along Interstate I-5 and I-90 was obtained from a 

database maintained by the Washington State Department of Transportation (MSDOT). The data 

contained road maintenance information such as Equipment Sensor Id, Maintenance Vehicle 

Number, Latitude, Longitude, LogDate, Maintenance Material Composition and Rate, 

RoadTemp, AirTemp, State Route Number and Milepost. This information was collected every 

10 to 20 second, with 10,1391 maintenance segments distributed along I-5 and I-90 highways 

from 01:10:49 12-01-2016 to 23:31:39 12-01-2016. The spreadsheet was representative and was 

used to establish the specific maintenance condition along the state route. The maintenance 

dataset was further cleaned, sorted and matched by action time and milepost. Ultimately, 17,982 

segments were obtained for further hourly average processing and matching. 

Traffic Flow Data  

Traffic volume and speed data were obtained from the installed detectors loops and 

traffic monitoring systems in Washington State. Loop detector data collected in every 5 minutes 

was obtained from UWDRIVE (http://uwdrive.net/STARLab). The information contained traffic 

information such as speed and volume per lane per hour, speed and volume per hour for all lanes, 

average daily frequency of congestion. This information contained 8928 dataset at each milepost 

along I-5 and I-90 highways from 00:00:00 12-01-2016 to 23:55:00 12-01-2016. The data was 

further cleaned, sorted and matched by action time and milepost. 

Surface Sensor and Weather Data 

Different road surface conditions/severities and weather history data were selected based 

on the availability of comprehensive datasets. Surface sensor data collected every 10 minutes 

was first reduced to only include the winter seasons of 2016-01 to 2016-12. Those missing data 

were excluded. The data included Road Surface Status (Snowy, Iced, Wet, Moisture, Dry), 

Surface Temp, Subsurface Temp, Friction Index, Precipitation Type, Precipitation Rate, 

Precipitation Intensity, Accumulated Precipitation, and Chemical Factor information. The data 

for modeling analysis were obtained after hourly average processing and milepost matching. 

http://uwdrive.net/STARLab
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3.2.2 Modeling through Artificial Neural Networks 

Artificial neural networks (ANNs) have been extensively employed to address the 

modeling needs that could not be addressed by traditional tools. ANNs are known for their 

outstanding capability to model “non-linear cause-and-effect relationships inherent in complex 

processes” (Shi et al., 2004), because ANNs “provide non-parametric, data-driven, self-adaptive 

approaches to information processing”. Some of the advantages of ANNs over traditional 

modeling methods (e.g., multi-regression) include: the ability to derive general trends even with 

incomplete or noisy data, the ability to capture functional relationships from examples, no need 

to make prior assumptions, and the ability to model highly non-linear relationships. Two 

disadvantages of ANNs include: the lack of an explicit model, and the risk of undertraining or 

overtraining the model. The type of ANNs adopted in this study was the multiplayer feed-

forward neural network, of which a typical architecture is shown in Figure 3.1.  

 

 

 

 

 

 

 

 

 

Figure 3.1: Typical Multiplayer Feed-forward Neural Network Architecture (Shi et al. 2004) 

In Figure 3.1, the nodes in the input and output layers represent the independent variables 

and response variable(s), respectively. Depending on the complexity of the relationship(s), one 

or more hidden layers are included to build the ANN model. For a feed-forward network, signals 

are designed to “propagate from the input layer through the hidden layer(s) to the output layer, 

and each node in a layer is connected in the forward direction to every node in the next layer” 

(Shi et al., 2004). Every node simulates how an artificial neuron functions, by linearly 

summating the inputs (via connection weights and bias terms) and then transforming them (via a 

non-linear transfer function). The details of how such an ANN is trained via the error back-

propagation (BP) algorithm can be found in the reference (Shi et al., 2004). In essence, the 

training (learning) process entails iterative adjustments of the connection weights and bias terms 

for each node (which initially have been randomized), with the end goal of minimizing the 

overall error term computed at the nodes of the output layer.  

Using the dataset identified for the training of the ANN model, the learning process 

continues until “the prediction error across all samples in the training data is minimized to a 

reasonable range or stabilized” (Shi et al., 2004), i.e., reaching convergence.  
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We wrote a computer program in C language to implement the ANN model with a 

modified BP algorithm for training. The sigmoid function in Equation (6) was used as the 

nonlinear transfer function and the sum of the mean squared error (SMSE) in the output layer 

was used as the convergence criteria. In this work, the values of learning rate  and momentum 

factor  were initialized at 0.9 and 0.5, respectively, and then automatically adjusted during the 

training process to avoid the trap of local minima. Before the training process, all the data for 

input factors and output factors were normalized based on Equation (7), where Xi  and NXi are the 

ith value of factor X before and after the normalization, and Xmin  and Xmax are the minimum and 

maximum value of factor X, respectively. The training process involves the selection of the 

appropriate number of hidden layer nodes and the determination of the appropriate limit of 

allowable training error. These often require a good understanding of how the ANN model works 

and how complex the cause-and-relationships to be modeled are, the number of records available 

in the training dataset, the perceived accuracy of the modeling data, etc.  

There were a total of 247 complete records available which had the friction index value 

as well as other parameters of interest, for December 2016, over a 20-mile segment on the 

Interstate highway I-5. These data were collected from three different sources for the historical 

records of WRM activities, macroscopic traffic parameters, and road weather conditions, 

respectively, before being organized, coupled with each other based on milepost and time stamp, 

and readied for analyses. From these records, a small fraction was randomly selected to serve as 

the testing dataset whereas the remainder was used to train and establish the ANN models. As 

shown in Error! Reference source not found., data from 241 WSDOT historical records  were 

used for the training of two ANN models, one for the traffic volume during the current hour, 

Volume(0h) and the other for the average traffic speed during the current hour, Speed(0h). The 

testing dataset consists of six records, as shown in Table 3.2.  
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Table 3.1: Dataset used to train the ANN models of hourly traffic volume and average traffic speed (a) 
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Table 3.1: Dataset used to train the ANN models of hourly traffic volume and average traffic speed (b) 
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Table 3.1: Dataset used to train the ANN models of hourly traffic volume and average traffic speed (c) 
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Table 3.1: Dataset used to train the ANN models of hourly traffic volume and average traffic speed (d) 
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Table 3.1: Dataset used to train the ANN models of hourly traffic volume and average traffic speed (e) 
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Table 3.1: Dataset used to train the ANN models of hourly traffic volume and average traffic speed (f) 
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Table 3.2: Dataset used to validate the ANN models 

 
 

In the post-processing datasets (shown in Table 3.1 and Table 3.2), the following eight 

input factors were used for the model development and validation:  

 

Volume(-1h) = the traffic volume during the prior hour  

Speed(-1h) = the average traffic speed during the prior hour  

Maintenance(-1h) = a categorical variable, 1 if an maintenance action (plowing, anti-icing, 

or deicing) was taken, based on the record on the AVL-equipped snowplow; 0 if 

not 

AirTemp = air temperature, F 

SfTemp = pavement surface temperature, F 

Accumulated Precip = accumulated precipitation, inches 

Sf Status = a class of pavement surface condition, including “Dry”, “Trace Moisture”, 

“Wet”, “Ice Watch”, and “Snow Warning”, which we converted to a numerical 

value of Speed Reduction Factor (SRF) of 1.0, 0.98, 0.96, 0.85, and 0.60, 

respectively. This conversion was necessary to enable the quantitative modeling. 

All SRF values except 0.60 were based on the reference (Ye et al., 2013). In the 

WSDOT system, “Ice Watch” corresponds to the condition of “thin or spotty film 

of moisture at or below freezing (32°F / 0°C).” 

Friction Index = “A value from 0 to 1 representing the deceleration capabilities of vehicles 

while taking into account current surface conditions. Larger values indicate a higher 

level of friction while smaller values represent a lower level of friction” (WSDOT 

manual). 

 

Similar to our case study for the Utah DOT, this project employed ANNs “as a data 

mining approach to abstract the useful information from existing happenstance data, in other 

words, to deduce reliable data from noisy data” (Strong and Shi, 2008). Once the empirical ANN 

models for average traffic speed and traffic volume were established and tested (using the 

training and testing datasets, respectively), these models were then employed to predict these 

macroscopic traffic parameters under a host of conditions, given that all the independent variable 

remain in the ranges of the data used for model development. 

3.3 Summary 

The objective of this chapter is to present a methodology developed to estimate the 

mobility benefits of winter maintenance operations, using historical traffic, WRM, and road 

weather data for a highway segment on I-5 in the State of Washington. 
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Chapter 4.  Summary and Conclusions 

4.1 Introduction 

As a result of winter weather (e.g., snowy/icy conditions), the traffic volume on highways 

tends to decrease and so does the average traffic speed. To mitigate such effects, WSDOT has 

employed a variety of tactics (mainly anti-icing, deicing and plowing) in their highway winter 

maintenance operations. This study collected and processed one month of the historical data 

from the 2015-2016 winter season (December 2016), such that it became feasible to couple the 

available road weather data, WRM operations data, and traffic data on selected highway segment 

for model development.  

The rest of this chapter is organized as follows. Section 4.2 provides a brief review of the 

exploration of the relationships between the factors of interest for this study. Section 4.3 presents 

the main results of modeling hourly traffic volume and average traffic speed by the use of ANN. 

Section 4.4 presents the conclusions of this Chapter, while Section 4.5 discusses the directions 

that should be taken in future research on this subject. 

4.2 Exploring the relationships between various factors 

 

4.2.1 Correlation between Friction Index and Surface Status 

As mentioned in Section 3.2.2., we converted the values of the categorical variable Sf 

Status (various RSC classes used by WSDOT) to numerical values of Speed Reduction Factor 

(SRF) corresponding to the specific pavement surface condition. Using all 248 records from the 

I-5 highway segment, December 2016, we developed an empirical model to correlate the 

numerical value of Sf Status and the Friction Index. Figure 4.1 illustrates that there is a strong 

positive relationship between these two indicators of pavement surface condition, with a R-

square as high as 0.8516. This finding is very useful because for most of the WSDOT highway 

segments the Sf Status is often reported by the Road Weather Information System (RWIS) station 

nearby, but there is no measurement or record of Friction Index. In the case of missing Friction 

Index data, Equation (8) could be used to estimate a value of Friction Index from the SRF 

associated with the Sf Status. The value of Friction Index is essential for modeling studies such 

as the one describe in this work. 

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 = 0.2366 ∗ exp (1.2433 ∗ SRF)           (8)  
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Figure 4.1: Relationship between Friction Index and Speed Reduction Factor estimated from surface status 

 

Figure 4.2: Relationship between pavement surface temperature and air temperature 

4.2.2 Correlation between Friction Index and Surface Status 

Using all 248 records from the I-5 highway segment, December 2016, we also developed 

an empirical model to correlate the Pavement Temperature and Air Temperature. Figure 4.2 

illustrates that there is a relatively strong positive relationship between these two indicators of 

pavement surface condition, with a R-square of 0.6573. This positive correlation is intuitive as 

higher air temperature tends to raise the temperature of pavement surface. There are apparently 
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some outlier data points in Figure 4.2, in which cases the pavement temperature was significantly 

affected by other factors (possibly wind, solar radiation, and maintenance activities). This 

empirical relationship is somewhat useful for the WSDOT highway segments far away from a 

RWIS station or any pavement surface temperature sensor. It is cautioned that this empirical 

equation can only be used for rough estimate of pavement temperature from air temperature, in 

light of the multiple factors that disrupt this correlation.  

4.2.3 The lack of correlations between other factors 

Using all 248 records from the I-5 highway segment, December 2016, we also explored 

the potential correlation between a set of other factors of interest. As shown in Figure 4.1, the 

historical data generally suggest the lack of any strong correlation between traffic volume and 

friction index, between average traffic speed and hourly traffic volume, between hourly traffic 

volume and accumulated precipitation, and between hourly traffic volume and Friction Index, 

respectively. In some of these cases, the lack of strong correlation is attributable to the presence 

of many other factors where were not fixed at a given level and thus disrupt the correlation 

between the two factors examined. 

 

  

Figure 4.3: Lack of correlation between other factors of interest 
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4.3 Modeling through Artificial Neural Network 

4.3.1 Evaluation of the trained ANN models 

As discussed in Section 3.2.2, two ANN models were trained, tested, and validated to 

correlate the traffic volume during the current hour, Volume(0h) and the average traffic speed 

during the current hour, Speed(0h), respectively, with the eight investigated factors. To develop 

the predictive Volume(0h) model, the 241 training samples in Table 3.1 were used to train an 

ANN with the topological structure of 8-11-1. The six samples in Table 3.2 were used for testing 

the validity of the trained model. The training was complete with a training SMSE of 0.083 and a 

testing SMSE of 0.068, respectively.  

 

Figure 4.4: Predicted hourly traffic volume vs. actual Volume(0h) from the training dataset 

 

Figure 4.5: Predicted hourly traffic volume vs. actual Volume(0h) from the testing dataset 

To develop the predictive Speed(0h) model, the 241 training samples in Table 3.1 were 

augmented by repeating once the eight samples with a Speed(0h) less than 45 mph. This aimed to 

address the poor distribution of Speed(0h) values in the dataset and minimize the potential bias 
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induced by the poorly distributed data density. Subsequently, the 249 samples were used to train 

an ANN with the topological structure of 8-4-3-1. The six samples in Table 3.2 were used for 

testing the validity of the trained model. The training was complete with a training SMSE of 

0.055 and a testing SMSE of 0.129, respectively. 

The Volume(0h) value for each training data point (for the given time and mileposts) was 

predicted by the 8-11-1 ANN model and then compared against the actual Volume(0h) measured 

(see Figure 4.4). The testing dataset was also used to validate the trained model and the results 

are shown in Figure 4.5. As illustrated by the R-square values (0.9022 and 0.9406) from the 

training data and testing data, the model was reliable in predicting the Volume(0h) value from the 

eight input parameters, even though the relative error of prediction for the six testing samples 

ranged from -31.3% to 22.6%.  

 

Figure 4.6: Predicted average traffic speed vs. actual Speed(0h) from the training dataset 

The Speed(0h) value for each training data point (for the given time and mileposts) was 

predicted by the 8-4-3-1 ANN model and then compared against the actual Speed(0h) measured 

(see Figure 4.6). As illustrated by the R-square value (0.8384) from the training data, the model 

was mostly reliable in predicting the Speed(0h) value from the eight input parameters. The 

relative error of prediction for the six testing samples ranged from -33.6% to 3.2%. Future work 

may explore the addition of more data points to address the data density issue in the training 

dataset, which is evident in Figure 4.6. In other words, more data points with lower average 

traffic speed are needed to improve the usefulness of the training samples. 

For both models, the relative error of individual data points can be attributed to errors in 

measurements (for both input and output parameters) as well as the fact that neither model 

considered some potentially important factors (e.g., type of traffic, hour of the day, timing of the 

WRM action during the hour, driver behavior, wind speed, and visibility). Nonetheless, we can 

conclude that the established ANN models “has relatively good ‘memory’ and the trained 

matrices of interconnected weights and bias reflect the hidden functional relationship very well” 

(Shi et al., 2004).  
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4.3.2 Using the trained ANN models for predictions 

As discussed in Section 4.3.1, two ANN models were trained, tested, and validated to be 

reasonably suitable for predicting the output parameters of unknown samples, provided that the 

input parameters are kept within the range of the data used to train each model. As such, this 

section presents a hypothetical scenario under which no WRM operations are conducted on the 

highway segment during the hours of interest. For this “no WRM” scenario, we predicted the 

Volume(0h) and Speed(0h) values for each data point (for the given time and mileposts), such 

that the difference between the actual scenario (where WSDOT implement the best available 

practices and technologies for WRM) and the “no WRM” scenario can be quantified in terms of 

hourly traffic volume and average traffic speed. 

For the “no WRM” scenario, the following assumptions were made:  

1) the values for the following parameters would stay the same as the “with WRM” scenario:  

Speed(-1h),  AirTemp, and SfTemp. 

2) Volume(-1h) is 5% less due to the deteriorating RSC condition (in the absence of WRM 

operations) 

3) Maintenance(-1h) = 0, i.e., no WRM action during the prior hour 

4) Accumulated Precip = the highest value observed from the modeling dataset, i.e., 5.05 

inches 

5) Sf Status = the worst value observed from the modeling dataset, i.e., 0.60 corresponding to 

the RSC of “Snow Warning”  

6) Friction Index = the worst value observed from the modeling dataset, i.e., 0.48 

For the 247 samples over the 20-mile I-5 highway segment, the mobility benefits of 

WRM operations can be estimated based on the actual vs. predicted hourly traffic volume and 

average traffic speed summarized in Table 4.1. 

Table 4.1: Summary of mobility benefits based on the ANN model predictions 

 

4.4 Summary and Conclusions 

Through extensive coordination with WSDOT and University of Washington, a 

substantial amount of historical data on WRM activities, macroscopic traffic parameters, and 

climatic conditions was obtained by the research team. Out of this data, we identified a total of 

247 complete records available which had the friction index value as well as other parameters of 

interest, for December 2016, over a 20-mile segment on the Interstate highway I-5. The data of 
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interest was organized, coupled with each other based on milepost and time stamp, and readied 

for analyses. Preliminary analysis revealed a strong correlation between the numerical value of Sf 

Status and the Friction Index and an empirical equation was developed, which could be used to 

fill the gaps in the missing Friction Index data, for modeling purposes. A relatively strong 

correlation between air temperature and pavement temperature was also found. Out of the 247 

records, a randomly selected dataset (six records) was set aside for testing the developed ANN 

models, whereas the rest of data was used to train the ANN models.  

In this work, one ANN model (with 8-11-1 structure) was developed for the traffic 

volume during the current hour, Volume(0h) and the other (with 8-4-3-1 structure) for the 

average traffic speed during the current hour, Speed(0h). For either of these two output factors, 

the following eight input factors were used for the model development and validation: Volume(-

1h), Speed(-1h), Maintenance(-1h), AirTemp, SfTemp, Accumulated Precip, Sf Status, and 

Friction Index. From the comparisons of actual and predicted Volume(0h) and Speed(0h) values, 

we can validate that these two models were capable of capturing the hidden relationships 

between the input and output factors. As such, these two models were used to predict a 

hypothetical “no WRM” scenario on the 20-mile I-5 highway segment. In the absence of WRM 

operations, the models predicted that the hourly traffic volume and average traffic speed would 

drop an average value of 26.9% and 6.6% (or a median value of 17.2% and 8.1%), respectively. 

Another means of quantifying the mobility benefits of the WSDOT WRM operations is by the 

avoided travel delays. In the absence of WRM operations, the models predicted an average value 

of 4.7% (or a median value of 8.8%) additional time needed to go through this 20-mile highway 

segment during December 2016. 

4.5 Directions for Future Research 

This project lays the foundation to address much needed research in the area of 

understanding the macroscopic effects of winter road maintenance operations on winter mobility 

in the State of Washington. In future research, it is desirable to develop a coherent winter 

mobility model that further integrates the microscopic effects (driver behavior on highways and 

the use of anti-icing vs. deicing tactics), such that movements of people and goods can be truly 

optimized by appropriate implementation of winter maintenance operations best practices and 

the lost capacity and increased congestion and delays due to winter weather can be minimized. 

Advanced technologies such as fully automated snowplows/salt spreaders and connected and 

automated vehicle (CAV) technologies will likely influence how winter road maintenance 

operations will be conducted and thus affect the winter mobility on highways.  

Traffic simulations could be conducted to examine the influence of aforementioned 

microscopic effects and technological advances, and the ultimate goal is to develop models that 

integrate driver behavior and traffic mobility into a comprehensive and quantitative winter 

mobility model for highway segments in the Pacific Northwest. 
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